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Abstract

In this paper, the geometric integrability and Lax integrability of the generalized
Fisher-type nonlinear diffusion equations with modified diffusion in (1+1)
and (2+1) dimensions are studied by the pseudo-spherical surface geometry
method and prolongation technique. It is shown that the (1+1)-dimensional
Fisher-type nonlinear diffusion equation is geometrically integrable in the
sense of describing a pseudo-spherical surface of constant curvature −1 only
for m = 2, and the generalized Fisher-type nonlinear diffusion equations in
(1+1) and (2+1) dimensions are Lax integrable only for m = 2. This paper
extends the results in Bindu et al 2001 (J. Phys. A: Math. Gen. 34 L689) and
further provides the integrability information of (1+1)- and (2+1)-dimensional
Fisher-type nonlinear diffusion equations for m = 2.

PACS numbers: 02.30.Ik, 02.40.−k, 02.30.Jr

1. Introduction

The study of integrability and exact solutions for reaction–diffusion systems has been one of
the most challenging problems in recent years. Bindu et al [1] considered the Fisher-type
reaction–diffusion equation with quadratic nonlinearity and modified diffusion,

ut − �u − m

1 − u
(∇u)2 − u(1 − u) = 0, m �= 0, (1)

where u = u(t, x) or u(t, x, y) is a certain kinetic variable, � and ∇ are Laplacian and
gradient operators, respectively. This is an important physical system appearing in many
areas of physics and biology [2–4]. Bindu et al pointed out that equation (1) with m = 2
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is Painlevé integrable [5] for both the (1+1) and (2+1) dimensions. More interestingly,
they found that the Bäcklund transformation deduced from the Laurent expansion gives
rise to the linearizing transformation in a natural way. Similarly, they showed that a Lie
symmetry analysis singles out the m = 2 case in equation (1) as the only system possessing
a nontrivial infinite-dimensional Lie algebra of symmetries and that the similarity variables
and similarity reductions gave rise to the linearizing transformation and several physically
interesting solutions, including the travelling wave solutions, static structures and so on known
in the literature, in an automatic way.

In this short paper, based on the geometric notion of a differential system describing
pseudo-spherical surfaces [6] and the prolongation technique [7, 8], we will give the further
integrability information for equation (1) with m = 2. We point out that the (1+1)-dimensional
case of equation (1) for m = 2 describes a pseudo-spherical surface of constant curvature −1,

and the (1+1)- and (2+1)-dimensional cases of equation (1) for m = 2 are Lax integrable.

2. The (1+1)-dimensional case of equation (1)

It is well known that a differential equation for a real-valued function u = u(x, t) is
said to describe pseudo-spherical surfaces (PSSs), i.e. it is geometrically integrable [6]
if it is the necessary and sufficient condition for the existence of smooth real functions
fij , 1 � i � 3, 1 � j � 2, depending only on u and a finite number of derivatives, such that
the 1-forms ωi = fi1 dx + fi2 dt, 1 � i � 3, satisfy the structure equations of a surface of
constant Gaussian curvature −1, that is,

dω1 = ω3 ∧ ω2, dω2 = ω1 ∧ ω3, dω3 = ω1 ∧ ω2. (2)

One can verify straightforwardly that (2) is equivalent to saying that

d

(
φ1

φ2

)
= �

(
φ1

φ2

)
, � = 1

2

(
ω2 ω1 − ω3

ω1 + ω3 −ω2

)
∈ sl(2, R) (3)

is a completely integrable system, i.e. d� − � ∧ � = 0.

In what follows, we prove that the (1+1)-dimensional case of (1)

ut − uxx − m

1 − u
u2

x − u + u2 = 0 (4)

describes pseudo-spherical surfaces and thus it is geometrically integrable only for m = 2. To
do so, first let ux = p, then (4) becomes

ut − px − m

1 − u
p2 − u + u2 = 0,

which can be represented by the set of 2-forms as follows:

α1 = du ∧ dt + p dt ∧ dx,

α2 = du ∧ dx + dp ∧ dt +

(
u2 − u − m

1 − u
p2+

)
dt ∧ dx,

(5)

which constitutes a closed ideal I = {α1, α2}.
Following the procedure of Chern and Tenenblat [6], we set f21 = η then (2) becomes⎧⎪⎨

⎪⎩
df11 ∧ dx + df12 ∧ dt + (ηf32 − f22f31) dx ∧ dt = 0,

df22 ∧ dt + (f12f31 − f11f32) dx ∧ dt = 0,

df31 ∧ dx + df32 ∧ dt + (ηf12 − f22f11) dx ∧ dt = 0,

(6)

2
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where fij = fij (u, p) and dfij = fij,u du + fij,p dp, from which we have

f11,p = f22,p = f31,p = 0, f31,u − f32,p = 0,

f11,u − f12,p = 0, f11,u

(
u2 − u − mp2

1 − u

)
+ pf12,u + ηf32 − f22f31 = 0,

pf22,u + f12f31 − f11f32 = 0, f31,u

(
u2 − u − mp2

1 − u

)
+ pf32,u + ηf12 − f22f11 = 0.

(7)

After some computation, we find that (7) has a nontrivial solution only for m = 2, i.e.

f11 = (C2 − C1 + C1u)η2 + C2u

(u − 1)η(η2 + 1)
, f32 = C2ux

(u − 1)2η
− C1 − C2

u − 1
,

f22 = η2 + 1, f31 = − (C2 − C1 + C1u)η2 + C2u

η(η2 + 1)(u − 1)
,

f12 = − C2ux

(u − 1)2η
+ C1 +

C2

u − 1
,

(8)

where C1, C2 are constants. Therefore, we have found the nontrivial 1-forms

ω1 = (C2 − C1 + C1u)η2 + C2u

(u − 1)η(η2 + 1)
dx +

[
C1 +

C2

u − 1
− C2ux

(u − 1)2η

]
dt,

ω2 = η dx + (η2 + 1) dt,

ω3 = − (C2 − C1 + C1u)η2 + C2u

η(η2 + 1)(u − 1)
dx +

[
C2ux

(u − 1)2η
− C1 − C2

u − 1

]
dt,

(9)

such that (2) is satisfied, which denotes that the (1+1)-dimensional case of (1), i.e. (4) describes
a PSS and thus is geometrically integrable only for m = 2.

In what follows, we prove that equation (4) is also Lax integrable by the prolongation
technique [6]. To do so, we introduce the system of 1-forms

ωi = dyi − F i(u, p, yi) dx − Gi(u, p, yi) dt, (10)

where yi (i = 1, 2, . . . , n) are called pseudo-potentials and assume F i and Gi are of the form
F i = F i

j y
j ,Gi = Gi

jy
j . For simplicity, we write F i

j to be F and Gi
j to be G.

We need I
⋃{ωi} to be a closed ideal, namely

dωi =
2∑

j=1

f i
j αj + ηi ∧ ωi, (11)

where f i
j are 0-form and ηi are 1-form, which leads to differential equations for F and G

Fp = 0, Fu = Gp, p2 m

1 − u
Fu + uFu − u2Fu − pGu + [F,G] = 0, (12)

where [F,G] = FG − GF.

The general solution for equation (12) is

F = X1 + X2(u − 1)1−m,

G = (1 − m)p(u − 1)1−m

u − 1
X2 + (u − 1)1−mX3 + X4,

where

(u − 1)1−m([X2, X3](u − 1)1−m + [X1, X3] + [X2, X4])

+ (u − 1)1−mu(m − 1)X2 + [X1, X4] = 0, X3 = [X1, X2], (13)

where X1, X2, X3, X4 are constant matrices.

3
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Only when 1 − m = ±1, i.e. when m = 0or2, one can find the nontrivial X1, X2, X3, X4

from (13). Because m �= 0, the only case is m = 2, so we have

F = X1 + X2 (u − 1)−1 ,

G = − X2

(u − 1)2 p +
X3

u − 1
+ X4,

(14)

with the commutation relations of X1, X2, X3, X4 (i.e. prolongation algebra)

X2 + [X2, X4] + [X1, X3] = 0, [X2, X3] = 0, [X1, X4] + X2 = 0,

[X1, X2] = X3.
(15)

This prolongation algebra has a nontrivial 2 × 2 matrix representation, so we have two
pseudo-potentials y1, y2, i.e. n = 2. From this representation and (13) and (14), F and G are
determined directly as follows:

F =

⎛
⎜⎜⎝

1 +
λ

u − 1
− λu

u − 1
λu

u − 1
1 +

λ − 2λu

u − 1

⎞
⎟⎟⎠ , G =

⎛
⎜⎜⎝

1 + λ − λux

(u − 1)2

λux

(u − 1)2

1 − λux

(u − 1)2
λ +

λux

(u − 1)2

⎞
⎟⎟⎠ . (16)

So the (1+1)-dimensional case of (1) is Lax integrable only for m = 2 and the Lax pair in
a matrix form is

yx = Fy, yt = Gy, where y =
(

y1

y2

)
, (17)

where F and G are given by (16).

3. The (2+1)-dimensional case of equation (1)

In this section, we will study the Lax integrablility of equation (1) in (2+1) dimensions,

ut − uxx − uyy − m

1 − u

(
u2

x + u2
y

) − u + u2 = 0, (18)

which is equivalent to the following system by introducing new dependent variables p, q,⎧⎨
⎩

p = ux, q = uy, py = qx,

ut = px + qy +
m

1 − u
(p2 + q2) + u − u2.

(19)

Following the procedure of [8], assume (18) has such a Lax pair{
ξx = Fξ + Aξy,

ξt = Gξ + Bξy,
(20)

where ξ is a column vector, A,B are constant matrices, and F,G are matrices with respect to
(u, p, q). The integrability condition ξxt = ξtx denotes{

[A,B] = 0, [A,G] − [B,F ] = 0,

Ft − Gx + AGy − BFy + [F,G] = 0.
(21)

From (21) we have the matrix algebra-differential equations about A,B and F,G,

[A,B] = 0, [A,G] − [B,F ] = 0, Fp = Fq = 0, Fu = Gp, Fu + AGq = 0,

AGp = Gq,

[
m

1 − u
(p2 + q2) + u − u2

]
Fu − pGu + qAGu − qBFu + [F,G] = 0.

(22)
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Using the same procedure as that for (12), we find that (22) has nontrivial solutions F,G and
A,B only for m = 2, they are

A =
(

1 − i 1

−1 −1 − i

)
, B = −2A, i = √−1,

F =

⎛
⎜⎜⎝

2 +
λ

u − 1
1 +

λ

u − 1

− λ

u − 1
1 − λ

u − 1

⎞
⎟⎟⎠ ,

G =

⎛
⎜⎜⎝

2uλ − 2u − 3λ + 2

u − 1
− λγ

(u − 1)2

uλ − 2u − 2λ + 2

u − 1
− λγ

(u − 1)2

λ(3u − u2 − 2 + γ )

(u − 1)2

λ(u − 1 + γ )

(u − 1)2

⎞
⎟⎟⎠ , γ = ux − iuy.

(23)

Therefore, the (2+1)-dimensional case of (1) is Lax integrable only for m = 2 and the Lax
pair is given by (20) with (23) and ξ = (ξ 1, ξ 2)T , where T denotes the transpose of a vector.

4. Conclusions

In summary, by using the PSS geometry method and prolongation technique we have
investigated the generalized Fisher-type nonlinear diffusion equations. As a result, we
point that the (1+1)-dimensional generalized Fisher-type nonlinear diffusion equation is
geometrically integrable in the sense of describing a PSS of constant curvature −1 and is
also Lax integrable in the sense of having Lax pair only for m = 2. The (2+1)-dimensional
generalized Fisher-type nonlinear diffusion equation is Lax integrable only for m = 2. These
results provide strong information on the integrability of (1+1)- and (2+1)-dimensional Fisher-
type nonlinear diffusion equations (1) for m = 2. The further work is regarding how to derive
interesting solutions of these integrable equations from their given Lax pairs.
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